MID-SEMESTER EXAMINATION, COMPLEX ANALYSIS, 2013-14

PRATEEP CHAKRABORTY

A1. Let $z_0 \in U$. Then $f(z_0) \neq 0$. Choose an open ball $B(z_0)$ around z_0 which does not contain the origin. Let $U_1 = f^{-1}(B(z_0))$. Therefore U_1 is an open set containing z_0

Again, as $B(z_0)$ is a simply connected open set not containing 0, so $z^{1/2}$ is a holomorphic function on it. This implies that on U_1 , $f = z^{1/2} \circ f^2$ is holomorphic. So, f is holomorphic on U.

Let
$$g(z) = z^{1/2}$$
. On U_1 , $f'(z_0) = g'(f^2(z_0)).((f^2(z))'(z_0)) = \frac{1}{2f(z_0)}.((f^2(z))'(z_0)).$

A2. We shall prove that the image of an entire function is dense in \mathbb{C} . This result will directly imply that in both cases f is constant.

Let, if possible, let the image of f is not dense. Then there is an open ball $B(z_0, r)$ around z_0 which is not contained in the image. Then let $g = f - z_0$ and B(0, r) is not in the image of g. Now, as $\frac{1}{z}$ is a holomorphic function on $\mathbb{C} - 0$, so $h(z) = 1/z \circ g$ is an entire function with $|h(z)| \leq 1/r$. So, h(z) is a bounded entire function, so is a constant function. So, g is also a constant function and so is f.

A3. If possible, suppose that there is no c > 0 such that

$$\sup(|1/z - p(z)|: |z| = 1) > c.$$

for all $p(z) \in [z]$.

Then there is a sequence $p_n(z) \in \mathbb{C}[z]$ with $|1/z - p_n(z)| < 1/n$ for all |z| = 1. Therefor, $p_n(z)$ converges uniformly to 1/z on unit circle S^1 . Then $\int_{S^1} p_n(z)dz$ converges to $\int_{S^1} (1/z)dz$. By Cauchy's integral formula, $\int_{S^1} p_n(z)dz = 0$ and $\int_{S^1} (1/z)dz = 2\pi i$, which is a contradiction.

A4. The set \mathbb{H} is a simply connected open subset of \mathbb{C} , not containing -1. Then $\frac{1}{1+z}$ is a holomorphic function on \mathbb{H} . Now, if we take the curve γ_1 , which is γ_2 followed by γ_3 , defined by $\gamma_2(t)$ is the straight line from -1 + i to -1 + 2i,

$$\begin{split} &\gamma_3(t) \text{ is the straight line from } -1+2i \text{ to } 1+2i.\\ &\text{As in } \mathbb{H}, \, \gamma \text{ and } \gamma_1 \text{ are homotopic and } \frac{1}{1+z} \text{ is holomorphic on } \mathbb{H}, \, \text{so } \int_{\gamma} \frac{1}{1+z} = \int_{\gamma_1} \frac{1}{1+z}.\\ &\text{Now, } \int_{\gamma_1} \frac{1}{1+z} = \int_{\gamma_2} \frac{1}{1+z} + \int_{\gamma_3} \frac{1}{1+z}.\\ &\text{Let } z = -1+it, \text{ then}\\ &\int_{\gamma_2} \frac{1}{1+z} = \int_1^2 \frac{idt}{it} = \log 2 - \log 1 = \log 2.\\ &\text{Let } z = t+2i.\\ &\text{Then } \int_{\gamma_3} \frac{1}{1+z} = \int_{-1}^1 \frac{dt}{1+2i+t} = \int_{-1}^1 \frac{1-2i+t}{(1+t)^2+4} dt = (1-2i) \int_{-1}^1 \frac{dt}{(1+t)^2+4} + \int_{-1}^1 \frac{tdt}{(1+t)^2+4}\\ &= (1-2i) \int_0^2 \frac{dt}{t^2+4} + \int_0^2 \frac{tdt}{t^4} = (1-2i) \frac{1}{2}.\frac{\pi}{4} + \frac{1}{2}(\log 8 - \log 4). \end{split}$$

PRATEEP CHAKRABORTY

A5. As f is a holomorphic function, so we have $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$. Now, as u is a function of x and v is a function of y, so $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = c$, where c is a complex number. So, $u = cx + d_1$ and $v = cy + d_2$, where $d_1, d_2 \in \mathbb{C}$. Therefore, $f = cz + d_1 + id_2$. Hence, f is a polynomial with degree ≤ 1 .

A6. (i) Suppose that for all $z \in \mathbb{D}$, $f(z) \neq 0$. Again by Maximum Modulus Principle, $|f(z)| < 1 \forall z \in \mathbb{D}$. But, if we can take the holomorphic function $\frac{1}{z} \circ f$, then we have $|\frac{1}{z} \circ f(z)| > 1 \forall z \in \mathbb{D}$ and $|\frac{1}{z} \circ f(z)| = 1 \forall |z| = 1$, which gives a contradiction to Maximum Modulus Principle. So, there will be $z \in \mathbb{D}$, so that f(z) = 0.

(ii) $|\phi_{\alpha}(z)|^2 = \phi_{\alpha}(z)\overline{\phi_{\alpha}(z)} = \frac{z-\alpha}{1-\bar{\alpha}z} \cdot \frac{\bar{z}-\bar{\alpha}}{1-\alpha\bar{z}} = \frac{z\bar{z}-\alpha\bar{z}-\bar{\alpha}\bar{z}+\alpha\bar{\alpha}}{1-\bar{\alpha}z-\alpha\bar{z}+\alpha\bar{\alpha}z\bar{z}}$. So, |z|=1 implies $|\phi_{\alpha}(z)|=1$. (iii) Take $g = \phi_{\alpha} \circ f$. Then from (i), for some $z \in \mathbb{D}$, g(z) = 0, i.e. $\frac{f(z)-\alpha}{1-\bar{\alpha}f(z)} = 0$. So for some $z \in \mathbb{D}$, we have $f(z) = \alpha$.

A7. Take r < 1 and let γ be the closed curve $\gamma(t) = re^{2\pi i t}$. Then $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z^{n+1}} dz$, where $f(z) = \sum a_n z^n$ is a holomorphic function on \mathbb{D} . Then, $|a_n| \leq \frac{1}{2\pi} \int_{\gamma} \frac{|f(z)|}{r^{n+1}} \leq \frac{1}{r^{n+1}}$ and this is true for any 0 < r < 1, therefore $|a_n| \leq 1$.