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PRATEEP CHAKRABORTY

A1. Let z0 ∈ U. Then f(z0) 6= 0. Choose an open ball B(z0) around z0 which does not contain
the origin. Let U1 = f−1(B(z0)). Therefore U1 is an open set containing z0

Again, as B(z0) is a simply connected open set not containing 0, so z1/2 is a holomorphic function
on it. This implies that on U1, f = z1/2 ◦ f2 is holomorphic. So, f is holomorphic on U.

Let g(z) = z1/2. On U1, f
′(z0) = g′(f2(z0)).((f

2(z))′(z0)) =
1

2f(z0)
.((f2(z))′(z0)).

A2. We shall prove that the image of an entire function is dense in C. This result will directly
imply that in both cases f is constant.

Let, if possible, let the image of f is not dense. Then there is an open ball B(z0, r) around z0
which is not contained in the image. Then let g = f − z0 and B(0, r) is not in the image of g. Now,
as 1

z is a holomorphic function on C − 0, so h(z) = 1/z ◦ g is an entire function with | h(z) |≤ 1/r.
So, h(z) is a bounded entire function, so is a constant function. So, g is also a constant function
and so is f.

A3. If possible, suppose that there is no c > 0 such that

sup(|1/z − p(z)| : |z |= 1) > c.

for all p(z) ∈ [z].
Then there is a sequence pn(z) ∈ C[z] with |1/z − pn(z)|< 1/n for all |z|= 1. Therefor, pn(z) con-
verges uniformly to 1/z on unit circle S1. Then

∫
S1 pn(z)dz converges to

∫
S1(1/z)dz. By Cauchy’s

integral formula,
∫
S1 pn(z)dz = 0 and

∫
S1(1/z)dz = 2πi, which is a contradiction.

A4. The set H is a simply connected open subset of C, not containing −1. Then 1
1+z is a holo-

morphic function on H. Now, if we take the curve γ1, which is γ2 followed by γ3, defined by
γ2(t) is the straight line from −1 + i to −1 + 2i,
γ3(t) is the straight line from −1 + 2i to 1 + 2i.
As in H, γ and γ1 are homotopic and 1

1+z is holomorphic on H, so
∫
γ

1
1+z =

∫
γ1

1
1+z .

Now,
∫
γ1

1
1+z =

∫
γ2

1
1+z +

∫
γ3

1
1+z .

Let z = −1 + it, then∫
γ2

1
1+z =

∫ 2

1
idt
it = log 2− log 1 = log 2.

Let z = t+ 2i.
Then

∫
γ3

1
1+z =

∫ 1

−1
dt

1+2i+t =
∫ 1

−1
1−2i+t

(1+t)2+4dt = (1− 2i)
∫ 1

−1
dt

(1+t)2+4 +
∫ 1

−1
tdt

(1+t)2+4

= (1− 2i)
∫ 2

0
dt

t2+4 +
∫ 2

0
tdt
t+4 = (1− 2i)12 .

π
4 + 1

2 (log 8− log 4).
1



2 PRATEEP CHAKRABORTY

A5. As f is a holomorphic function, so we have ∂u
∂x = ∂v

∂y . Now, as u is a function of x and v is

a function of y, so ∂u
∂x = ∂v

∂y = c, where c is a complex number. So, u = cx + d1 and v = cy + d2,

where d1, d2 ∈ C. Therefore, f = cz + d1 + id2. Hence, f is a polynomial with degree ≤ 1.

A6. (i) Suppose that for all z ∈ D, f(z) 6= 0. Again by Maximum Modulus Principle, |f(z)|<
1∀z ∈ D. But, if we can take the holomorphic function 1

z ◦ f , then we have | 1z ◦ f(z)|> 1 ∀z ∈ D and

| 1z ◦ f(z)|= 1 ∀|z|= 1, which gives a contradiction to Maximum Modulus Principle. So, there will be
z ∈ D, so that f(z) = 0.

(ii) |φα(z)|
2= φα(z)φα(z) =

z−α
1−ᾱz .

z̄−ᾱ
1−αz̄ = zz̄−αz̄−ᾱz+αᾱ

1−ᾱz−αz̄+αᾱzz̄ .

So, |z|= 1 implies |φα(z)|= 1.

(iii) Take g = φα ◦ f. Then from (i), for some z ∈ D, g(z) = 0, i.e. f(z)−α
1−ᾱf(z) = 0. So for some z ∈ D,

we have f(z) = α.

A7. Take r < 1 and let γ be the closed curve γ(t) = re2πit. Then an = 1
2πi

∫
γ

f(z)
zn+1 dz, where

f(z) =
∑

anz
n is a holomorphic function on D. Then, |an|≤

1
2π

∫
γ

|f(z)|
rn+1 ≤ 1

rn+1 and this is true for

any 0 < r < 1, therefore |an|≤ 1.


